Posts

Showing posts with the label Kelas 12

SAMPLING - Theory & Formulas

Image
Other note source 📊 SAMPLING - Theory & Formulas Cambridge AS & A Level Mathematics 📖 Part 1: Introduction to Sampling Key Definitions Population: Complete set of ALL items of interest Sample: Part of the population (size = n) Representative Sample: Accurately reflects population characteristics Biased Sample: Does NOT properly represent population Random Sample: ALL possible samples of size n have equal probability of selection 💡 Why Use Samples? Reason Example 💰 Cost-Effective Test 50 products vs 10,000 ⏰ Time-Saving Survey 100 people vs millions 🔨 Destructive Testing Crash testing helmets 🌍 Impossible to Survey All All fish in the ocean 🎲 Random Sampling Methods Using Random Number Tables: Number population: 000 to 499 (for 500 items) Pick starting point in table Read digits matching your numbering Ignore numbers outside range Ignore repeats Using Excel: =RAN...

NUMERICAL SOLUTIONS OF EQUATIONS

Image
Other note source NUMERICAL SOLUTIONS OF EQUATIONS Concise Theory & Formula Guide Cambridge AS & A Level Mathematics 1. INTRODUCTION Numerical methods find approximate solutions to equations that cannot be solved algebraically. Examples include x³ + x - 4 = 0 , eˣ = 2x + 1 , and sin(x) = x - 1 . Historical Fact: Quintic equations (degree 5 and higher) generally have no algebraic solutions, making numerical methods essential. 2. LOCATING ROOTS (Section 6.1) Root Definition α is a root of f(x) = 0 if f(α) = 0 Method 1: Graphical Approach Rearrange equation as g(x) = h(x) , sketch both graphs, and find intersection points. Each intersection represents a root. Method 2: Change of Sign Method Change of Sign Principle: If f(x) is continuous and f(a) · f(b) If f(a) 0 → Root exists between a and b Example: Change of Sign Problem: Show f(x) = x⁵ + x - 1 = 0 has a root between 0 ...

INTEGRATION PM2

Image
Other note source 📐 INTEGRATION - Theory & Formulas Cambridge AS & A Level Mathematics - Pure Mathematics 2 1. Introduction to Integration Integration is the reverse process of differentiation . Symbol: ∫ f(x) dx means "integrate f(x) with respect to x" ⚠️ Always add + c for indefinite integrals (constant of integration) Example: • Differentiate x² → get 2x • Integrate 2x → get x² + c 2. Integration of Exponential Functions Basic Rules ∫ e x dx = e x + c ∫ e (ax+b) dx = (1/a) e (ax+b) + c Example 1: ∫ e (3x) dx a = 3, so answer = (1/3)e (3x) + c Example 2: ∫ 6e (3x) dx = 6 × (1/3)e (3x) + c = 2e (3x) + c Example 3: Evaluate ∫₀² e (3x) dx Step 1: Integrate: [(1/3)e (3x) ]₀² Step 2: Upper limit: (1/3)e⁶ Step 3: Lower limit: (1/3)e⁰ = 1/3 Answer: (1/3)(e⁶ - 1) 3. Integration of 1/(ax+b) Basic Rules ∫ (1/x) dx = ln|x| + c ∫ 1/(ax+b) dx = (1/a) ln|ax+b| + c ⚠️ Always use |x| (absolute value) b...

Further Differentiation PM2

Image
Differentiation - Cambridge AS & A Level Mathematics 📐 DIFFERENTIATION Cambridge AS & A Level Mathematics - Pure Mathematics 2 📚 Apa yang Akan Anda Pelajari: Mendiferensiasikan produk dan hasil bagi Menggunakan turunan dari e x , ln(x), sin(x), cos(x), tan(x) Mencari turunan dari fungsi implisit dan parametrik Menerapkan diferensiasi untuk menyelesaikan masalah nyata 4.1 ATURAN PRODUK (PRODUCT RULE) Apa itu Aturan Produk? Ketika kita perlu mendiferensiasikan fungsi yang dikalikan bersama , kita menggunakan Aturan Produk. Contoh: y = (x + 1)⁴ × (3x - 2)³ 📌 RUMUS ATURAN PRODUK Jika y = u × v, maka: dy/dx = u(dv/dx) + v(du/dx) 💡 Dalam Kata-kata: Fungsi pertama × turunan kedua + Fungsi kedua × turunan pertama y = u × v | _________|_________ | | | | u(dv/dx) v(du/dx) | | |_______TAMBAH______| ...

Continuous random variables

Image
Other Source Ringkasan Teori & Rumus Variabel Acak Kontinu 1. Definisi Variabel Acak Kontinu Variabel acak kontinu X dapat memiliki nilai apa pun dalam interval kontinu . Contoh: tinggi badan, waktu tunggu, suhu, laju peluruhan radioaktif. 2. Fungsi Kepadatan Peluang (PDF) Syarat PDF f(x) : 1. f(x) ≥ 0 untuk semua x 2. ∫ -∞ ∞ f(x) dx = 1 (total luas = 1) Grafik PDF f(x) x 3. Menghitung Peluang Karena P(X = a) = 0 , peluang hanya bisa dihitung untuk interval: P(a ≤ X ≤ b) = ∫ a b f(x) dx Untuk grafik sederhana bisa juga dengan geometri (luas segiempat, trapesium, segitiga). 4. Nilai Tengah (Median) Median m adalah nilai yang memenuhi: ∫ -∞ m f(x) dx = 0.5 Intuisi: letak vertikal yang membelah luas kurva menjadi dua bagian sama besar. 5. Persentil Umum Persentil- p (0 < p < 1) adalah q sedemikian hingga: ∫ -∞ q f(x) dx = p 6. Nilai Harapan (Mean) E(X) = μ = ∫ -∞ ∞ x f(x) dx 7. Varia...

Logarithmic And Exponential Functions

Image
Logarithmic & Exponential Functions All-in-One Theory Sheet 2.1 Logarithms to Base 10 Definition: If 10 x = y , then log 10 y = x (written log y for short). ┌-----┐ │ 10 │ │ ^ │ ← Exponent │ y │ └-----┘ log 1000 = 3 because 10³ = 1000 log 0.01 = –2 because 10 –2 = 0.01 2.2 Logarithms to Any Base a Definition: If a x = y with a > 0 and a ≠ 1 , then log a y = x . log₂ 32 = 5 because 2⁵ = 32 log₅ 1 = 0 because 5⁰ = 1 2.3 The Three Laws of Logarithms ┌-------┐ │ Laws │ └-------┘ Product: log a (xy) = log a x + log a y Quotient: log a (x / y) = log a x – log a y Power: log a (x n ) = n log a x 2.4 Solving Logarithmic Equations Golden Rule: Logs only exist for positive numbers. Use the laws to get a single log on each side. Drop the log...

Further Algebra

Image
Quiz 1:   Fullscreen Mode Aljabar Lanjutan: Pecahan Parsial dan Ekspansi Binomial 🎓 Aljabar Lanjutan: Pecahan Parsial dan Ekspansi Binomial 📚 Pengantar: Mengapa Kita Mempelajari Aljabar Lanjutan? Pernahkah kamu melihat pecahan seperti ini? (2x + 13)/[(2x + 1)(x - 3)] Atau mungkin ekspresi seperti ini? (1 + x)^(-3) Nah, di bab ini kita akan belajar cara menangani ekspresi-ekspresi yang tampak rumit ini! Kita akan belajar dua hal utama: 1. Pecahan Parsial - cara memecah pecahan rumit menjadi pecahan-pecahan yang lebih sederhana 2. Ekspansi Binomial - cara mengembangkan (1 + x)^n ketika n bukan bilangan bulat positif 🔢 7.1 Pecahan Aljabar Tidak Wajar (Improper Algebraic Fractions) Apa itu Pecahan Tidak Wajar? Inga...

Linear combinations of random variables

Image
Quiz 1:   Fullscreen Mode Kombinasi Linear Variabel Acak Kombinasi Linear Variabel Acak Topik ini membahas bagaimana menggabungkan beberapa variabel acak dan menganalisis rata-rata (ekspektasi) serta varians (ukuran sebaran) dari kombinasi tersebut. Konsep ini sangat penting dalam berbagai aplikasi, seperti manajemen portofolio saham atau perhitungan waktu total dalam triathlon. Bab 3: Kombinasi Linear Variabel Acak Dalam bab ini, kita akan mempelajari: Menemukan rata-rata (mean) dan varians dari kombinasi linear variabel acak. Menghitung probabilitas dari kombinasi linear variabel acak. Menyelesaikan masalah yang melibatkan kombinasi linear variabel acak. 3.1 Ekspektasi dan Varians dari Satu Variabel Acak yang Diubah Aturan Pertama: Menambah atau Mengurangi Konstanta Jika kalian memiliki v...