Further Calculus PM2
📚 Further Calculus - Complete Guide
Pure Mathematics 3| Cambridge AS & A Level
8.1 Derivative of tan⁻¹(x)
Understanding tan⁻¹(x):
The inverse tangent function (arctan) reverses the tangent operation.
If tan(θ) = x, then θ = tan⁻¹(x)
The inverse tangent function (arctan) reverses the tangent operation.
If tan(θ) = x, then θ = tan⁻¹(x)
Derivation
Let y = tan⁻¹(x) Then: tan(y) = x Differentiate both sides: sec²(y) × dy/dx = 1 Therefore: dy/dx = 1/sec²(y) Using identity: sec²(y) = 1 + tan²(y) = 1 + x² Result: dy/dx = 1/(1 + x²)
KEY FORMULA:
d/dx[tan⁻¹(x)] = 1/(1 + x²)
With chain rule:
d/dx[tan⁻¹(f(x))] = f'(x)/(1 + [f(x)]²)
d/dx[tan⁻¹(x)] = 1/(1 + x²)
With chain rule:
d/dx[tan⁻¹(f(x))] = f'(x)/(1 + [f(x)]²)
Example 1: Differentiate tan⁻¹(3x)
Solution:
Let f(x) = 3x, so f'(x) = 3
d/dx[tan⁻¹(3x)] = 3/(1 + 9x²)
Solution:
Let f(x) = 3x, so f'(x) = 3
d/dx[tan⁻¹(3x)] = 3/(1 + 9x²)
Example 2: Differentiate tan⁻¹(√x)
Solution:
f(x) = x^(1/2), f'(x) = 1/(2√x)
d/dx[tan⁻¹(√x)] = [1/(2√x)] / [1 + x]
= 1/[2√x(1 + x)]
Solution:
f(x) = x^(1/2), f'(x) = 1/(2√x)
d/dx[tan⁻¹(√x)] = [1/(2√x)] / [1 + x]
= 1/[2√x(1 + x)]
8.2 Integration of 1/(x² + a²)
The Reverse Process:
Since d/dx[tan⁻¹(x)] = 1/(1 + x²), we can integrate backwards!
Since d/dx[tan⁻¹(x)] = 1/(1 + x²), we can integrate backwards!
KEY FORMULAS:
∫ 1/(1 + x²) dx = tan⁻¹(x) + c
∫ 1/(x² + a²) dx = (1/a)tan⁻¹(x/a) + c
∫ 1/(1 + x²) dx = tan⁻¹(x) + c
∫ 1/(x² + a²) dx = (1/a)tan⁻¹(x/a) + c
Why Does This Work?
Verify by differentiating:
d/dx[(1/a)tan⁻¹(x/a)] = (1/a) × 1/(1 + x²/a²) × (1/a)
= 1/(a² + x²) ✓
Example 1: Find ∫ 1/(x² + 25) dx
Solution:
Here a² = 25, so a = 5
∫ 1/(x² + 25) dx = (1/5)tan⁻¹(x/5) + c
Solution:
Here a² = 25, so a = 5
∫ 1/(x² + 25) dx = (1/5)tan⁻¹(x/5) + c
Example 2: Evaluate ∫₀² 1/(x² + 4) dx
Solution:
a² = 4, so a = 2
= [(1/2)tan⁻¹(x/2)]₀²
= (1/2)tan⁻¹(1) - 0
= (1/2)(π/4) = π/8
Solution:
a² = 4, so a = 2
= [(1/2)tan⁻¹(x/2)]₀²
= (1/2)tan⁻¹(1) - 0
= (1/2)(π/4) = π/8
Example 3: Find ∫ 1/(x² + 2x + 3) dx
Solution:
Complete the square: x² + 2x + 3 = (x + 1)² + 2
Let u = x + 1, then:
= ∫ 1/(u² + 2) du
= (1/√2)tan⁻¹(u/√2) + c
= (1/√2)tan⁻¹[(x + 1)/√2] + c
Solution:
Complete the square: x² + 2x + 3 = (x + 1)² + 2
Let u = x + 1, then:
= ∫ 1/(u² + 2) du
= (1/√2)tan⁻¹(u/√2) + c
= (1/√2)tan⁻¹[(x + 1)/√2] + c
8.3 Integration of kf'(x)/f(x)
The Pattern:
Remember: d/dx[ln(f(x))] = f'(x)/f(x)
So integrating reverses this process!
Remember: d/dx[ln(f(x))] = f'(x)/f(x)
So integrating reverses this process!
KEY FORMULA:
∫ f'(x)/f(x) dx = ln|f(x)| + c
∫ kf'(x)/f(x) dx = k ln|f(x)| + c
∫ f'(x)/f(x) dx = ln|f(x)| + c
∫ kf'(x)/f(x) dx = k ln|f(x)| + c
How to Recognize This Pattern
Look for:
- A fraction (numerator/denominator)
- The numerator is (or can be adjusted to be) the derivative of the denominator
- The denominator is a function, not just x
Example 1: Find ∫ 2x/(x² + 3) dx
Solution:
Let f(x) = x² + 3
Then f'(x) = 2x ✓ (matches numerator!)
∫ 2x/(x² + 3) dx = ln|x² + 3| + c
= ln(x² + 3) + c (always positive)
Solution:
Let f(x) = x² + 3
Then f'(x) = 2x ✓ (matches numerator!)
∫ 2x/(x² + 3) dx = ln|x² + 3| + c
= ln(x² + 3) + c (always positive)
Example 2: Find ∫ tan(x) dx
Solution:
tan(x) = sin(x)/cos(x)
Let f(x) = cos(x), f'(x) = -sin(x)
∫ tan(x) dx = ∫ -(-sin(x))/cos(x) dx
= -ln|cos(x)| + c
Solution:
tan(x) = sin(x)/cos(x)
Let f(x) = cos(x), f'(x) = -sin(x)
∫ tan(x) dx = ∫ -(-sin(x))/cos(x) dx
= -ln|cos(x)| + c
Example 3: Find ∫ x/(x² + 1) dx
Solution:
f(x) = x² + 1, f'(x) = 2x
Numerator is x, need 2x. Multiply by 1/2:
∫ x/(x² + 1) dx = (1/2)∫ 2x/(x² + 1) dx
= (1/2)ln(x² + 1) + c
Solution:
f(x) = x² + 1, f'(x) = 2x
Numerator is x, need 2x. Multiply by 1/2:
∫ x/(x² + 1) dx = (1/2)∫ 2x/(x² + 1) dx
= (1/2)ln(x² + 1) + c
8.4 Integration by Substitution
The Big Idea:
Transform a difficult integral into an easier one by changing variables.
Think of it like straightening a curved road to measure it!
Transform a difficult integral into an easier one by changing variables.
Think of it like straightening a curved road to measure it!
The Method
Steps for Substitution:
- Choose substitution u = g(x)
- Find du/dx, rearrange to get dx
- Replace ALL x terms with u terms
- Integrate with respect to u
- Substitute back to get answer in x
Example 1: Find ∫ 4x(2x + 1)^(1/2) dx using u = 2x + 1
Solution:
u = 2x + 1
du/dx = 2, so dx = du/2
x = (u - 1)/2
∫ 4x√(2x + 1) dx = ∫ 4(u-1)/2 × √u × du/2
= ∫ (u - 1)√u du
= ∫ (u^(3/2) - u^(1/2)) du
= (2/5)u^(5/2) - (2/3)u^(3/2) + c
= (2/5)(2x+1)^(5/2) - (2/3)(2x+1)^(3/2) + c
Solution:
u = 2x + 1
du/dx = 2, so dx = du/2
x = (u - 1)/2
∫ 4x√(2x + 1) dx = ∫ 4(u-1)/2 × √u × du/2
= ∫ (u - 1)√u du
= ∫ (u^(3/2) - u^(1/2)) du
= (2/5)u^(5/2) - (2/3)u^(3/2) + c
= (2/5)(2x+1)^(5/2) - (2/3)(2x+1)^(3/2) + c
Example 2: Find ∫ cos(x)sin⁵(x) dx
Solution:
Let u = sin(x)
du/dx = cos(x), so dx = du/cos(x)
∫ cos(x)sin⁵(x) dx = ∫ cos(x) × u⁵ × du/cos(x)
= ∫ u⁵ du
= (1/6)u⁶ + c
= (1/6)sin⁶(x) + c
Solution:
Let u = sin(x)
du/dx = cos(x), so dx = du/cos(x)
∫ cos(x)sin⁵(x) dx = ∫ cos(x) × u⁵ × du/cos(x)
= ∫ u⁵ du
= (1/6)u⁶ + c
= (1/6)sin⁶(x) + c
Example 3 (Definite): Evaluate ∫₀³ x√(x + 1) dx using u = x + 1
Solution:
u = x + 1, so x = u - 1, dx = du
When x = 0: u = 1
When x = 3: u = 4
∫₀³ x√(x + 1) dx = ∫₁⁴ (u - 1)√u du
= ∫₁⁴ (u^(3/2) - u^(1/2)) du
= [(2/5)u^(5/2) - (2/3)u^(3/2)]₁⁴
= [64/5 - 16/3] - [2/5 - 2/3]
= 116/15
Solution:
u = x + 1, so x = u - 1, dx = du
When x = 0: u = 1
When x = 3: u = 4
∫₀³ x√(x + 1) dx = ∫₁⁴ (u - 1)√u du
= ∫₁⁴ (u^(3/2) - u^(1/2)) du
= [(2/5)u^(5/2) - (2/3)u^(3/2)]₁⁴
= [64/5 - 16/3] - [2/5 - 2/3]
= 116/15
Example 4 (Trig Substitution): Find ∫ 8/(x² + 4) dx using x = 2tan(θ)
Solution:
x = 2tan(θ)
dx = 2sec²(θ) dθ
x² + 4 = 4tan²(θ) + 4 = 4sec²(θ)
∫ 8/(x² + 4) dx = ∫ 8/(4sec²(θ)) × 2sec²(θ) dθ
= ∫ 4 dθ = 4θ + c
= 4tan⁻¹(x/2) + c
Solution:
x = 2tan(θ)
dx = 2sec²(θ) dθ
x² + 4 = 4tan²(θ) + 4 = 4sec²(θ)
∫ 8/(x² + 4) dx = ∫ 8/(4sec²(θ)) × 2sec²(θ) dθ
= ∫ 4 dθ = 4θ + c
= 4tan⁻¹(x/2) + c
8.5 Partial Fractions in Integration
The Strategy:
Break complicated fractions into simpler fractions that are easy to integrate.
Break complicated fractions into simpler fractions that are easy to integrate.
Types of Partial Fractions
| Type | Form |
|---|---|
| Linear factors | A/(x + a) + B/(x + b) |
| Repeated linear | A/(x + a) + B/(x + a)² |
| Irreducible quadratic | A/(x + a) + (Bx + C)/(x² + b) |
Example 1: Find ∫ 3/[(x - 1)(x + 3)] dx
Solution:
3/[(x-1)(x+3)] = A/(x-1) + B/(x+3)
3 = A(x + 3) + B(x - 1)
Let x = 1: 3 = 4A → A = 3/4
Let x = -3: 3 = -4B → B = -3/4
∫ 3/[(x-1)(x+3)] dx = ∫ [3/4/(x-1) - 3/4/(x+3)] dx
= (3/4)ln|x-1| - (3/4)ln|x+3| + c
= (3/4)ln|x-1|/|x+3| + c
Solution:
3/[(x-1)(x+3)] = A/(x-1) + B/(x+3)
3 = A(x + 3) + B(x - 1)
Let x = 1: 3 = 4A → A = 3/4
Let x = -3: 3 = -4B → B = -3/4
∫ 3/[(x-1)(x+3)] dx = ∫ [3/4/(x-1) - 3/4/(x+3)] dx
= (3/4)ln|x-1| - (3/4)ln|x+3| + c
= (3/4)ln|x-1|/|x+3| + c
Example 2: Find ∫ (2x + 3)/[(x + 1)(x + 2)] dx
Solution:
(2x+3)/[(x+1)(x+2)] = A/(x+1) + B/(x+2)
2x + 3 = A(x + 2) + B(x + 1)
Let x = -1: 1 = A → A = 1
Let x = -2: -1 = -B → B = 1
∫ (2x+3)/[(x+1)(x+2)] dx = ∫ [1/(x+1) + 1/(x+2)] dx
= ln|x+1| + ln|x+2| + c
= ln|(x+1)(x+2)| + c
Solution:
(2x+3)/[(x+1)(x+2)] = A/(x+1) + B/(x+2)
2x + 3 = A(x + 2) + B(x + 1)
Let x = -1: 1 = A → A = 1
Let x = -2: -1 = -B → B = 1
∫ (2x+3)/[(x+1)(x+2)] dx = ∫ [1/(x+1) + 1/(x+2)] dx
= ln|x+1| + ln|x+2| + c
= ln|(x+1)(x+2)| + c
Important: If degree of numerator ≥ degree of denominator, divide first using polynomial long division!
8.6 Integration by Parts
The Reverse of Product Rule:
Used when integrating a product of two functions.
Used when integrating a product of two functions.
KEY FORMULA:
∫ u(dv/dx) dx = uv - ∫ v(du/dx) dx
Or simply: ∫ u dv = uv - ∫ v du
∫ u(dv/dx) dx = uv - ∫ v(du/dx) dx
Or simply: ∫ u dv = uv - ∫ v du
LIATE Rule for Choosing u
Choose u as the function that appears FIRST in this list:
- Logarithmic (ln x, log x)
- Inverse trig (tan⁻¹x, sin⁻¹x)
- Algebraic (x², x, √x)
- Trigonometric (sin x, cos x)
- Exponential (eˣ, e²ˣ)
Example 1: Find ∫ x eˣ dx
Solution:
u = x (algebraic), dv/dx = eˣ
du/dx = 1, v = eˣ
∫ x eˣ dx = x × eˣ - ∫ eˣ × 1 dx
= x eˣ - eˣ + c
= eˣ(x - 1) + c
Solution:
u = x (algebraic), dv/dx = eˣ
du/dx = 1, v = eˣ
∫ x eˣ dx = x × eˣ - ∫ eˣ × 1 dx
= x eˣ - eˣ + c
= eˣ(x - 1) + c
Example 2: Find ∫ ln(x) dx
Solution:
Write as: ∫ 1 × ln(x) dx
u = ln(x), dv/dx = 1
du/dx = 1/x, v = x
∫ ln(x) dx = x ln(x) - ∫ x × (1/x) dx
= x ln(x) - ∫ 1 dx
= x ln(x) - x + c
= x(ln(x) - 1) + c
Solution:
Write as: ∫ 1 × ln(x) dx
u = ln(x), dv/dx = 1
du/dx = 1/x, v = x
∫ ln(x) dx = x ln(x) - ∫ x × (1/x) dx
= x ln(x) - ∫ 1 dx
= x ln(x) - x + c
= x(ln(x) - 1) + c
Example 3: Find ∫ x sin(x) dx
Solution:
u = x, dv/dx = sin(x)
du/dx = 1, v = -cos(x)
∫ x sin(x) dx = -x cos(x) - ∫ (-cos(x)) dx
= -x cos(x) + sin(x) + c
Solution:
u = x, dv/dx = sin(x)
du/dx = 1, v = -cos(x)
∫ x sin(x) dx = -x cos(x) - ∫ (-cos(x)) dx
= -x cos(x) + sin(x) + c
Example 4: Find ∫ x² eˣ dx (requires TWO applications!)
Solution:
First application:
u = x², dv/dx = eˣ
du/dx = 2x, v = eˣ
∫ x² eˣ dx = x² eˣ - 2∫ x eˣ dx
Second application on ∫ x eˣ dx:
= x eˣ - eˣ
Final:
∫ x² eˣ dx = x² eˣ - 2(x eˣ - eˣ) + c
= eˣ(x² - 2x + 2) + c
Solution:
First application:
u = x², dv/dx = eˣ
du/dx = 2x, v = eˣ
∫ x² eˣ dx = x² eˣ - 2∫ x eˣ dx
Second application on ∫ x eˣ dx:
= x eˣ - eˣ
Final:
∫ x² eˣ dx = x² eˣ - 2(x eˣ - eˣ) + c
= eˣ(x² - 2x + 2) + c
Example 5 (Definite): Evaluate ∫₀^π x sin(x) dx
Solution:
From Example 3: ∫ x sin(x) dx = -x cos(x) + sin(x) + c
= [-x cos(x) + sin(x)]₀^π
= [-π(-1) + 0] - [0 + 0]
= π
Solution:
From Example 3: ∫ x sin(x) dx = -x cos(x) + sin(x) + c
= [-x cos(x) + sin(x)]₀^π
= [-π(-1) + 0] - [0 + 0]
= π
8.7 Combining Techniques
Strategy Guide
1. Always simplify first!
- Expand brackets
- Complete the square
- Factor if possible
- Divide if needed
- f'(x)/f(x) → ln|f(x)|
- 1/(x² + a²) → (1/a)tan⁻¹(x/a)
- Products → Integration by parts
- Composite functions → Substitution
- Rational functions → Partial fractions
Example 1: Find ∫ (3x + 7)/(x² + 2x + 5) dx
Solution:
Write: 3x + 7 = A(2x + 2) + B
3 = 2A → A = 3/2
7 = 2A + B → B = 4
= (3/2)∫ (2x+2)/(x²+2x+5) dx + 4∫ 1/(x²+2x+5) dx
First part: (3/2)ln(x² + 2x + 5)
Second part - complete square: x² + 2x + 5 = (x+1)² + 4
4∫ 1/[(x+1)² + 4] dx = 2tan⁻¹((x+1)/2)
Final: (3/2)ln(x² + 2x + 5) + 2tan⁻¹((x+1)/2) + c
Solution:
Write: 3x + 7 = A(2x + 2) + B
3 = 2A → A = 3/2
7 = 2A + B → B = 4
= (3/2)∫ (2x+2)/(x²+2x+5) dx + 4∫ 1/(x²+2x+5) dx
First part: (3/2)ln(x² + 2x + 5)
Second part - complete square: x² + 2x + 5 = (x+1)² + 4
4∫ 1/[(x+1)² + 4] dx = 2tan⁻¹((x+1)/2)
Final: (3/2)ln(x² + 2x + 5) + 2tan⁻¹((x+1)/2) + c
Example 2: Find ∫ x³/(x² + 1) dx
Solution:
Polynomial division: x³/(x² + 1) = x - x/(x² + 1)
∫ x³/(x² + 1) dx = ∫ x dx - ∫ x/(x² + 1) dx
= x²/2 - (1/2)ln(x² + 1) + c
Solution:
Polynomial division: x³/(x² + 1) = x - x/(x² + 1)
∫ x³/(x² + 1) dx = ∫ x dx - ∫ x/(x² + 1) dx
= x²/2 - (1/2)ln(x² + 1) + c
📋 Formula Quick Reference
Differentiation
d/dx[tan⁻¹(x)] = 1/(1 + x²)d/dx[tan⁻¹(f(x))] = f'(x)/(1 + [f(x)]²)
Integration - Standard Forms
∫ 1/(1 + x²) dx = tan⁻¹(x) + c∫ 1/(x² + a²) dx = (1/a)tan⁻¹(x/a) + c
∫ f'(x)/f(x) dx = ln|f(x)| + c
Integration - Methods
By Parts: ∫ u dv = uv - ∫ v duSubstitution: Replace dx with (dx/du)du
Partial Fractions: Split P(x)/Q(x) into simpler terms
Final Exam Tips:
- Don't forget '+ c' for indefinite integrals!
- Change limits when using substitution for definite integrals.
- Check if angles are in Radians (Calculus almost always uses Radians).
- If you get stuck, try a different method - if Substitution fails, try Parts!
