Straight lines and quadratic equations C
📐 Straight Lines & Quadratic Equations
Complete Formulas - Grade 9 Cambridge IGCSE
Part 1: STRAIGHT LINES
1.1 Equation of a Line
y = mx + c
m = gradient (slope)
c = y-intercept
m = gradient (slope)
c = y-intercept
1.2 Gradient (Slope)
m = (y₂ - y₁)/(x₂ - x₁)
m = rise/run
m = rise/run
1.3 Special Lines
| Type | Equation | Gradient |
|---|---|---|
| Horizontal | y = c | 0 |
| Vertical | x = a | Undefined |
1.4 Parallel Lines
Parallel: m₁ = m₂
1.5 Perpendicular Lines
Perpendicular: m₁ × m₂ = -1
Or: m₂ = -1/m₁
Or: m₂ = -1/m₁
1.6 Distance Formula
d = √[(x₂ - x₁)² + (y₂ - y₁)²]
1.7 Midpoint Formula
M = ((x₁+x₂)/2, (y₁+y₂)/2)
Example: Midpoint of (2,8) and (10,4)
M = ((2+10)/2, (8+4)/2) = (6, 6)
M = ((2+10)/2, (8+4)/2) = (6, 6)
Part 2: QUADRATICS
2.1 Expanding Brackets
(x + a)(x + b) = x² + (a+b)x + ab
2.2 FOIL Method
First × First
Outside × Outside
Inside × Inside
Last × Last
Outside × Outside
Inside × Inside
Last × Last
(x + 3)(x + 5)
F: x·x = x²
O: x·5 = 5x
I: 3·x = 3x
L: 3·5 = 15
= x² + 8x + 15
F: x·x = x²
O: x·5 = 5x
I: 3·x = 3x
L: 3·5 = 15
= x² + 8x + 15
2.3 Perfect Squares
(a + b)² = a² + 2ab + b²
(a - b)² = a² - 2ab + b²
(a - b)² = a² - 2ab + b²
❌ (x+4)² ≠ x²+16
✅ (x+4)² = x²+8x+16
✅ (x+4)² = x²+8x+16
2.4 Difference of Two Squares
a² - b² = (a+b)(a-b)
| Expression | Factorised |
|---|---|
| x² - 49 | (x+7)(x-7) |
| x² - 1 | (x+1)(x-1) |
| 4x² - 9 | (2x+3)(2x-3) |
2.5 Factorising Quadratics
x² + bx + c = (x + p)(x + q)
Find p,q where:
p × q = c
p + q = b
Find p,q where:
p × q = c
p + q = b
Factorise: x² + 7x + 12
Need: p×q = 12, p+q = 7
Try: 3×4 = 12, 3+4 = 7 ✓
Answer: (x+3)(x+4)
Need: p×q = 12, p+q = 7
Try: 3×4 = 12, 3+4 = 7 ✓
Answer: (x+3)(x+4)
2.6 Solving Quadratic Equations
If a × b = 0, then a = 0 OR b = 0
Steps:
1️⃣ Rearrange to = 0
2️⃣ Factorise
3️⃣ Set each bracket = 0
4️⃣ Solve
1️⃣ Rearrange to = 0
2️⃣ Factorise
3️⃣ Set each bracket = 0
4️⃣ Solve
Solve: x² - 7x + 12 = 0
Factorise: (x-4)(x-3) = 0
x-4=0 or x-3=0
x = 4 or x = 3
Factorise: (x-4)(x-3) = 0
x-4=0 or x-3=0
x = 4 or x = 3
📋 Quick Reference
STRAIGHT LINES:
• y = mx + c
• m = (y₂-y₁)/(x₂-x₁)
• d = √[(x₂-x₁)²+(y₂-y₁)²]
• M = ((x₁+x₂)/2, (y₁+y₂)/2)
• Parallel: m₁ = m₂
• Perpendicular: m₁×m₂ = -1
QUADRATICS:
• (x+a)(x+b) = x²+(a+b)x+ab
• (a±b)² = a²±2ab+b²
• a²-b² = (a+b)(a-b)
• y = mx + c
• m = (y₂-y₁)/(x₂-x₁)
• d = √[(x₂-x₁)²+(y₂-y₁)²]
• M = ((x₁+x₂)/2, (y₁+y₂)/2)
• Parallel: m₁ = m₂
• Perpendicular: m₁×m₂ = -1
QUADRATICS:
• (x+a)(x+b) = x²+(a+b)x+ab
• (a±b)² = a²±2ab+b²
• a²-b² = (a+b)(a-b)
Practice makes perfect! 📐✨